新型コロナウイルス(SARS-CoV-2)に対する治療薬の効果に影響を及ぼす可能性があるウイルスゲノム変異によるアミノ酸置換について(第9版)

国立健康危機管理研究機構

国立感染症研究所

令和7年10月3日

作成関係部署

インフルエンザ研究センター 応用疫学研究センター 感染症疫学センター 感染症危機管理研究センター 感染症サーベイランス研究部 感染病理部 研究企画調整センター 呼吸器系ウイルス研究部 獣医科学部 治療薬開発研究部 病原体ゲノム解析研究センター ワクチン開発研究センター (五十音順)

1. 背景

新型コロナウイルス感染症の重症患者や重症化リスクのある患者の治療には、ウイルス特異的治療薬が用いられており、治療薬の作用を逃避する変異ウイルスの発生が懸念されている。治療薬の効果に影響を及ぼす可能性のあるアミノ酸置換は多数報告されており、それらの発生動向をゲノムサーベイランスによって把握し、臨床的効果への影響を評価することは、治療薬の使用判断において必要な知見となる。本レポートでは、日本国内で検体採取され PathoGenS(Pathogen Genomic data collection System)に登録された遺伝子配列情報の解析をおこない、現状国内で伝播しているウイルスのアミノ酸置換が、抗体治療薬と抗ウイルス薬の効果に影響を及ぼす可能性を評価した。ただし、アミノ酸置換が起こっても、その置換が必ずしも治療薬の効果に影響を及ぼさない場合があることは、重要な留意点である。

2. 抗体治療薬

2-1 抗体治療薬の効果に影響を与える可能性のあるアミノ酸置換部位について

国内で認可されている抗体治療薬への潜在的な影響が考慮される主なアミノ酸置換は、スパイクタンパク質のレセプター結合に関わる部位にあり、以下のものが挙げられる。

• <u>Casirivim</u>ab

C336¹, C361¹, K417^{1,2}, Y453^{1,2}, L455^{1,2}, F456², I472^{1,2}, A475², G476^{1,2}, C480¹, E484^{1,2}, G485^{1,2}, F486^{1,2}, N487^{1,2}, Y489^{1,2}, O493^{1,2}

Imdevimab

C361¹, N439^{1,2}, N440^{1,2}, S443^{1,2}, K444^{1,2}, V445^{1,2}, G446^{1,2}, G447^{1,2}, N448^{1,2}, N450², P499^{1,2}, P507¹

Sotrovimab

C336^{1,3}, P337^{1,3}, E340^{1,3}, T345³, R346⁴, K356^{1,3}, I358^{1,3}, C361³, Y365^{1,3}, Y369³, S371³

Tixaqevimab

1472⁵, A475^{1,5}, G476^{1,5}, G485^{1,5}, F486^{1,5}, N487^{1,5}, Y489^{1,5}

Cilgavimab

C336¹, R346^{1,5}, C361¹, E406⁵, Q409¹, S443¹, K444^{1,5}, V445⁵, G446^{1,5}, G447^{1,5}, N448^{1,5}, Y449⁵, N450^{1,5}, P463¹, S494⁵

2-2国内で検出されたアミノ酸置換

以下、それぞれの変異が影響を及ぼす治療薬の名称を括弧[]内に記す。

図 1 に示した最近の 16 週間(2025 年第 19 週~2025 年第 34 週、2025 年 9 月 25 日時点集計:暫定)に国内で採取された計 1,555 件の検体の集計では、R346[Sotrovimab と Cilgavimab]、

N487[Casirivimab と Tixagevimab]置換の消失が認められた。その他の置換は、前期間(2025 年第 3 週 ~2025 年第 18 週)から引き続き 90%以上のウイルスで認められた。

一方、図 2 に示した長期的視野で集計された 8 週単位(2024 年第 31 週~2025 年第 34 週、2025 年 9 月 25 日時点集計:暫定)の推移においては、この一年間で R346[Sotrovimab と Cilgavimab]および N487[Casirivimab と Tixaqevimab]置換が低い頻度で認められた。

3. 抗ウイルス薬

3-1 抗ウイルス薬の効果に影響を与える可能性のあるアミノ酸置換部位について

国内で認可されている抗ウイルス薬への潜在的な影響が考慮される主なアミノ酸置換は、nsp5 あるいは nsp12 部位にあり、以下のものが挙げられる。

nsp5 に置換が入る抗ウイルス薬

• Nirmatrelvir

 $T21^{6-11}, T25^{12}, C44^{12}, S46^{13}, M49^{7}, L50^{6,8,9,14-22}, P52^{12}, Y54^{10,19,23}, K90^{9}, P108^{9,13}, T135^{13}, G138^{23}, F140^{13}, N142^{11,24}, G143^{13}, S144^{6,13,18,25,26}, C160^{13}, H163^{12}, H164^{13}, M165^{13,25}, E166^{6,8-13,15,18,19,24,25,27}, L167^{15,23,26}, P168^{19,27,28}, T169^{13,29}, H172^{10,13,25,30}, A173^{6,9,13,28}, P184^{26}, V186^{13}, R188^{13,22}, Q189^{13,24,27}, A191^{13}, Q192^{13,19,23-25}, A193^{13}, A194^{23}, D248^{13}, A260^{13}, V297^{13}, P252^{6}, S301^{19}, T304^{6,9,14,31}, F305^{23}$

Ensitrelvir

 $F8^{26}, T21^{7,8,26}, T25^{12,19,32}, C44^{12}, T45^{28}, D48^{28,32,33}, M49^{7,19,28,32-34}, L50^{6,8,18}, P52^{12,32,33}, Y54^{19,23}, L57^{26}, \\ S144^{6,18,19,26,28,32,33}, H163^{12}, H164^{12}, M165^{19}, E166^{8,12,15,19,34}, L167^{15,23,26,34}, P168^{19,28}, P184^{26}, Q192^{19,23}$

nsp12 に置換が入る抗ウイルス薬

Remdesivir

 $V166^{35}, N198^{35}, P323^{35}, A376^{36}, F480^{35}, V557^{35}, S759^{35-37}, V792^{29,35,38-40}, M794^{39,40}, E796^{40}, C799^{35,40}, E802^{41,42}, T803^{40}$

Molnupiravir

報告が無い

3-2国内で検出されたアミノ酸置換

図 3 に示した最近の 16 週間(2025 年第 19 週~2025 年第 34 週、2025 年 9 月 25 日時点集計:暫定)の集計では、Remdesivir の効果に影響を与える可能性のある RNA ポリメラーゼ(nsp12)の 323 番目のアミノ酸置換(P323)が、100%に近い流行ウイルスで維持されていた。この傾向は図 4 に示した長期的視野で集計された 8 週単位(2024 年第 31 週~2025 年第 34 週、2025 年 9 月 25 日時点集計:暫定)においても、同様であった。ただし、P323 は V166 と同時にアミノ酸置換が起こることによりRemdesivir の効果に影響を及ぼすことが報告されており、P323 の単独のアミノ酸置換では抗ウイルス効果に影響を及ぼさないと考えられる 43.44。

4. 留意点

本レポートに集計されたアミノ酸置換は、ウイルス遺伝子の単変異が原因となって、ウイルスの抗体治療薬や抗ウイルス薬への感受性に影響を及ぼすものである。しかし、ウイルス遺伝子の複数の変異や、複合的な影響によって単変異の薬剤への効果は変化する可能性があることから、今後これらのアミノ酸置換の評価は変更される可能性がある。またこれらのアミノ酸置換をもつ個々のウイルスが実際に薬剤耐性の性質をもっているかどうかは、培養細胞を用いたウイルス増殖抑制や中和活性の測定によって確認される必要があり、必ずしも臨床において影響を及ぼすとは限らないことにも留意が必要である。

5. ゲノム解析の推移

引き続き JN.1 系統の亜系統と、その組換え体が世界的な主流となっている。特に 2025 年 4 月までは 世界的に JN.1 系統の亜系統である LP.8.1 系統が主流となっていた。その後は地域により状況が異なっており、2025 年 5 月以降、欧米では LP.8.1 系統から XFG 系統への置き換わりが進んでいる一方で、日本を含むアジアでは XDV 系統の亜系統である NB.1.8.1 系統への置き換わりが進んでいる(2025 年 9 月 10 日現在)。

※LF系統、LP系統: JN.1系統の亜系統

XFG 系統: LF.7 系統と LP.8.1.2 系統の組換え体

NB系統: XDV系統(JN.1系統と XDE系統(XBB系統の亜系統同士の組換え体)の組換え体)の亜系統

謝辞

ゲノム解読に従事いただきました全国の地方衛生研究所等自治体に感謝申し上げます。

0 %	100 %

					20	25		imab	паь	imab	'imab	Лак		
		19-20 wk	21-22 wk	23-24 wk	25-26 wk	27-28 wk	29-30 wk	31-32 wk	33-34 wk	Casirivimab	^{Im} devimab	Sotrovimab	^{Tix} agevimab	Cilgavimat
	C336	0	0	0	0	0	0	0	0	•		•		•
	P337	0	0	0	0	0	0	0	0			•		
	E340	0	0	0	0	0	0	0	0			•		
	T345	0	0	0	0	0	0	0	0			•		
	R346	14.13	14.85	7.77	6.54	8.33	7.62	0	0			•		•
	K356	98.91	98.02	94.17	95.33	95.10	96.69	97.19	98.82			•		
	I358	0	0	0	0	0	0	0	0			•		
	C361	0	0	0	0	0	0	0	0	•	•	•		•
	Y365	0	0	0	0	0	0	0	0			•		
-	Y369	0	0	0	0	0	0	0	0			•		
	S371	98.91	97.03	94.17	94.39	94.61	96.36	96.43	98.03			•		
_	E406	0	0	0	0	0	0	0	0					•
	Q409	0	0	0	0	0	0	0	0					•
	K417	98.91	98.02	94.17	96.26	95.10	97.02	97.45	98.43	•				-
	N439	0	0	0	0	0	0	0	0	-	•			
	N440	98.91	100.00	100.00	100.00	100.00	99.67	99.74	100.00		•			
	S443	0	0	0	0	0	0	0	0		•			•
	K444	0	0	0	0	0	0	0	0		•			•
	V445	98.91	100.00	100.00	100.00	100.00	99.67	99.74	97.64		•			•
	G446	98.91	100.00	100.00	100.00	100.00	99.67	99.74	100.00		•			•
_	G447	0	0	0	0	0	0	0	0		•			•
	N448	0	0	0	0	0	0	0	0		•			•
	Y449	0	0	0	0	0	0	0	0					•
	N450	98.91	100.00	100.00	100.00	100.00	99.67	99.74	100.00		•			•
_	Y453	96.91	0	0	0	0	99.67	99.74	0	•	•			•
1	L455	98.91	100.00	100.00	100.00	100.00	99.67	99.74	100.00	•				
	F456	98.91	100.00	100.00	100.00	100.00	99.67	99.74	100.00	•				
3	P463	96.91	0	0	0	0	99.67	99.74	0	•				•
	I472			0	0	0	0		0					•
	A475	0	0					0		•			•	
	G476	0	0	0	0	0	0	0	0	•			•	
		0	0	0	0	0	0	0	0	•			•	
	C480	0	0	0	0	-	0	0	0	•				
-	E484	98.91	100.00	100.00	100.00	100.00	99.67	99.74	100.00	•				
	G485	0	0	0	0	0	0	0	0	•			•	
	F486	98.91	100.00	100.00	100.00	100.00	99.67	99.74	100.00	•			•	
	N487	6.52	0	6.80	5.61	6.86	5.63	0	0	•			•	
	Y489	0	0	0	0	0	0	0	0	•			•	
	Q493	96.74	98.02	100.00	98.13	99.02	99.67	99.74	100.00	•				
	S494	0	0	0	0	0	0	0	0					•
	P499	0	0	0	0	0	0	0	0		•			
	P507	0	0	0	0	0	0	0	0		•			

図 1. 抗体治療薬の効果に影響を及ぼす可能性があるアミノ酸置換の割合:2 週毎の推移(2025 年第 19 週~2025 年第 34 週)

すべての抗体治療薬に対する変異が、90%以上のウイルスで維持されている。Sotrovimab と Cilgavimab に対する R346 置換および Casirivimab と Tixagevimab に対する N487 置換の消失が認められた。

抗体治療薬の効果に影響を及ぼす可能性があるアミノ酸置換を●で示す。<u>これらの置換は必ずしも臨</u>床的効果に影響を与えるとは限らず、また複数のアミノ酸置換による複合的な影響も考慮されていない。

※図表は 2025 年 9 月 25 日時点での PathoGenS 集計データ(暫定)です。

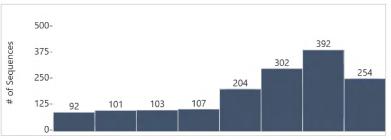
※期間は 2025 年第 19 週(2025/5/5)~2025 年第 34 週(2025/8/24)です。

0 %

		20	24	2024 /25		20	25		imab	,m _{ab}	imab	^{Ti} xagevimab	паь
		31-38 wk	39-46 wk	47-2 wk	3-10 wk	11-18 wk	19-26 wk	27-34 wk	Casirivimab	^I mdevimab	Sotrovimab	Tixage	Cil _{Bavimab}
	C336	0	0	0	0	0	0	0	•		•		•
	P337	0	0	0	0	0	0	0			•		
	E340	0	0	0	0	0	0	0			•		
	T345	0	0	0	0	0	0	0			•		
	R346	0	6.01	9.89	7.25	0	10.67	6.08			•		•
	K356	93.77	97.09	96.14	96.60	97.71	96.53	97.05			•		
	I358	0	0	0	0	0	0	0			•		
	C361	0	0	0	0	0	0	0	•	•	•		•
型	Y365	0	0	0	0	0	0	0			•		
	Y369	0	0	0	0	0	0	0			•		
illo illo	S371	93.18	96.56	95.99	96.44	97.48	96.03	96.44			•		
型	E406	0	0	0	0	0	0	0					•
整	Q409	0	0	0	0	0	0	0					•
2E	K417	93.46	96.51	95.63	96.47	97.25	96.77	97.14	•				
32	N439	0	0	0	0	0	0	0		•			
160	N440	98.69	96.80	97.00	97.53	97.59	99.75	99.83		•			
#	S443	0	0	0	0	0	0	0		•			•
25	K444	0	0	0	0	0	0	0		•			•
20	V445	98.60	96.75	96.93	97.31	97.59	99.75	99.31		•			•
· ()	G446	98.60	96.80	96.93	97.37	97.59	99.75	99.83		•			•
恢文	G447	0	0	0	0	0	0	0		•			•
(# ()#	N448	0	0	0	0	0	0	0		•			•
松	Y449	0	0	0	0	0	0	0					•
蒸	N450	98.73	96.95	97.00	97.69	97.82	99.75	99.83		•			•
怒	Y453	0	0	0	0	0	0	0	•				
2	L455	98.50	97.09	97.04	97.63	97.82	99.75	99.83	•				
111	F456	98.55	97.00	97.04	97.69	97.82	99.75	99.83	•				
がた	P463	0	0	0	0	0	0	0					•
#	I472	0	0	0	0	0	0	0	•			•	
17	A475	0	0	0	0	0	0	0	•			•	
五子	G476	0	0	0	0	0	0	0	•			•	
寷	C480	0	0	0	0	0	0	0	•			-	
Spike遺伝子に生じたアミノ酸置換を伴う変異(2025年09月25日時点集計:暫定)	E484	99.10	98.55	98.56	99.17	99.43	99.75	99.83	•				
Sp	G485	0	0	0	0	0	0	0	•			•	
	F486	99.12	98.55	98.52	99.07	99.43	99.75	99.83	•			•	
	N487	0	0	0	0	0	5.71	0	•			•	
	Y489	0	0	0	0	0	0	0	•			•	
	Q493	93.75	93.02	95.13	98.56	98.97	98.26	99.65	•			-	
	S494	0	0	0	0	0	0	0	-				•
	P499	0	0	0	0	0	0	0		•			
	P507	0	0	0	0	0	0	0		•			
	# of Sequences	5,584	2,064	2,770	3,118	873	403	1,152					1

図 2. 抗体治療薬の効果に影響を及ぼす可能性があるアミノ酸置換の割合:8 週単位の推移(2024 年第 31 週 \sim 2025 年第 34 週)

前期間(2025 年第 3 週~2025 年第 18 週)において一旦消失した Sotrovimab と Cilgavimab に対する R346 置換が再び認められた。また、Casirivimab と Tixagevimab に対する N487 置換が新たに認められた。その他のアミノ酸置換は、全期間において 90%以上のウイルスで維持されている。


抗体治療薬の効果に影響を及ぼす可能性があるアミノ酸置換を●で示す。<u>これらの置換は必ずしも臨床的効果に影響を与えるとは限らず、また複数のアミノ酸置換による複合的な影響も考慮されていない。</u>

※図表は 2025 年 9 月 25 日時点での PathoGenS 集計データ(暫定)です。

※期間は 2024 年第 31 週(2024/7/29)~2025 年第 34 週(2025/8/24)です。

0 %

						20)25				sivir	iravir	relvir	lvir
			19-20 wk	21-22 wk	23-24 wk	25-26 wk	27-28 wk	29-30 wk	31-32 wk	33-34 wk	Remdesivir	Molnupiravir	Nirmatrelvir	Ensitrelvir
		F8	0	0	0	0	0	0	0	0				•
		T21	0	0	0	0	0	0	0	0			•	•
		T25	0	0	0	0	0	0	0	0			•	•
		C44	0	0	0	0	0	0	0	0			•	•
		T45	0	0	0	0	0	0	0	0				•
		S46	0	0	0	0	0	0	0	0			•	
		D48	0	0	0	0	0	0	0	0				•
		M49	0	0	0	0	0	0	0	0			•	•
		L50	0	0	0	0	0	0	0	0			•	•
		P52	0	0	0	0	0	0	0	0			•	•
		Y54	0	0	0	0	0	0	0	0			•	•
		L57	0	0	0	0	0	0	0	0				•
		K90	0	0	0	0	0	0	0	0			•	
		P108	0	0	0	0	0	0	0	0			•	
nspb遺伝子		T135	0	0	0	0	0	0	0	0			•	
		G138	0	0	0	0	0	0	0	0			•	
		F140	0	0	0	0	0	0	0	0			•	
		N142	0	0	0	0	0	0	0	0			•	
		G143	0	0	0	0	0	0	0	0			•	
		S144	0	0	0	0	0	0	0	0			•	•
l N		C160	0	0	0	0	0	0	0	0			•	
nsp5遺伝子		H163	0	0	0	0	0	0	0	0			•	•
瘦		H164	0	0	0	0	0	0	0	0			•	•
0.0		M165	0	0	0	0	0	0	0	0			•	•
ns		E166	0	0	0	0	0	0	0	0			•	•
		L167	0	0	0	0	0	0	0	0			•	•
		P168	0	0	0	0	0	0	0	0			•	•
		T169	0	0	0	0	0	0	0	0			•	
		H172	0	0	0	0	0	0	0	0			•	
		A173	0	0	0	0	0	0	0	0			•	
		P184	0	0	0	0	0	0	0	0			•	•
		V186	0	0	0	0	0	0	0	0			•	
		R188	0	0	0	0	0	0	0	0			•	
		Q189	0	0	0	0	0	0	0	0			•	
		A191	0	0	0	0	0	0	0	0			•	
		Q192	0	0	0	0	0	0	0	0			•	•
		A193	0	0	0	0	0	0	0	0			•	-
		A194	0	0	0	0	0	0	0	0			•	
		D248	0	0	0	0	0	0	0	0			•	
		P252	0	0	0	0	0	0	0	0			•	
		A260	0	0	0	0	0	0	0	0			•	
		V297	0	0	0	0	0	0	0	0			•	
		S301	0	0	0	0	0	0	0	0			•	
		T304	0	0	0	0	0	0	0	0			•	
		F305	0	0	0	0	0	0	0	0			•	
	+	V166	0	0	0	0	0	0	0	0				
		N198	0	0	0	0	0	0	0	0	•			
		P323	100.00	98.02	100.00	99.07	99.51	98.68	100.00	100.00	•			
		A376	0	0	0	0	0	0	0	0	•			
M-		F480	0	0	0	0	0	0	0	0	•			
币		V557	0	0	0	0	0	0	0	0	•			
惣	-	S759	0	0	0	0	0	0	0	0	•			
nsp12遺伝子	-	V792	0	0	0	0	0	0	0	0	•			-
nsl		M794	0	0	0	0	0	0	0	0	•			-
	-	E796	0	0	0	0	0	0	0	0	•			
		C799	0	0	0	0	0	0	0	0	•			
		E802	0	0	0	0	0	0	0	0	•			
1	1	T803	0	0	0	0	0	0	0	0	•			

図 3. 抗ウイルス薬の効果に影響を及ぼす可能性があるアミノ酸置換の割合:2 週毎の推移(2025 年第19 週~2025 年第34 週)

Remdesivir に影響する nsp12 の P323 の置換が 100%に近い値で維持されている。ただし、P323 は V166 と同時にアミノ酸置換が起こることにより Remdesivir の効果に影響を及ぼすことが報告されており、P323 の単独のアミノ酸置換では抗ウイルス効果に影響を及ぼさないと考えられる 43,44 。

抗ウイルス薬の効果に影響を及ぼす可能性があるアミノ酸置換を●で示す。<u>これらの置換は必ずしも</u> 臨床的効果に影響を与えるとは限らず、また複数のアミノ酸置換による複合的な影響も考慮されていない。

- ※図表は 2025 年 9 月 25 日時点での PathoGenS 集計データ(暫定)です。
- ※期間は 2025 年第 19 週(2025/5/5)~2025 年第 34 週(2025/8/24)です。
- ※nsp5 の P108, G138, G143, P168, D248, A260, V297, S301, F305 置換は酵素阻害活性のみで検証された。
- ※nsp5 の S46, T135, C160, T169, V186 置換は培養細胞で得られた耐性株で検証されていない。
- ※nsp12 の V166, N198, P323, F480, V557, S759, V792, C799 置換はベクルリー添付文書に記載されている。

0 %

		20	24	2024 /25		20	25		sivir	iravir	relvir	į. Į.
		31-38 wk	39-46 wk	47-2 wk	3-10 wk	11-18 wk	19-26 wk	27-34 wk	Remdesivir	Mohupiravir	Nirmatrelvir	Ensitrelvir
	F8	0	0	0	0	0	0	0				•
	T21	0	0	0	0	0	0	0			•	•
	T25	0	0	0	0	0	0	0			•	•
	C44	0	0	0	0	0	0	0			•	•
	T45	0	0	0	0	0	0	0				•
	S46	0	0	0	0	0	0	0			•	
	D48	0	0	0	0	0	0	0				•
	M49	0	0	0	0	0	0	0			•	•
	L50	0	0	0	0	0	0	0			•	•
	P52	0	0	0	0	0	0	0			•	•
	Y54	0	0	0	0	0	0	0			•	•
	L57	0	0	0	0	0	0	0				•
	K90	0	0	0	0	0	0	0			•	
	P108	0	0	0	0	0	0	0			•	
	T135	0	0	0	0	0	0	0			•	
	G138	0	0	0	0	0	0	0			•	
	F140	0	0	0	0	0	0	0			•	
	N142	0	0	0	0	0	0	0			•	
	G143 S144	0	0	0	0	0	0	0			•	_
	C160	0	0	0	0	0	0	0			•	•
nsp5遺伝子	H163	0	0	0	0	0	0	0			•	_
電布	H164	0	0	0	0	0	0	0			•	•
5	M165	0	0	0	0	0	0	0			•	
nsi	E166	0	0	0	0	0	0	0			•	•
	L167	0	0	0	0	0	0	0			•	•
	P168	0	0	0	0	0	0	0			•	•
	T169	0	0	0	0	0	0	0			•	•
	H172	0	0	0	0	0	0	0			•	
	A173	0	0	0	0	0	0	0			•	
	P184	0	0	0	0	0	0	0			•	•
	V186	0	0	0	0	0	0	0			•	
	R188	0	0	0	0	0	0	0			•	
	Q189	0	0	0	0	0	0	0			•	
	A191	0	0	0	0	0	0	0			•	
	Q192	0	0	0	0	0	0	0			•	•
	A193	0	0	0	0	0	0	0			•	
	A194	0	0	0	0	0	0	0			•	
	D248	0	0	0	0	0	0	0			•	
	P252	0	0	0	0	0	0	0			•	
	A260	0	0	0	0	0	0	0			•	
	V297	0	0	0	0	0	0	0			•	
	S301	0	0	0	0	0	0	0			•	
	T304	0	0	0	0	0	0	0			•	
	F305	0	0	0	0	0	0	0			•	
	V166	0	0	0	0	0	0	0	•			
	N198	0	0	0	0	0	0	0	•			
	P323	99.52	99.32	99.31	99.36	99.66	99.26	99.57	•			
	A376	0	0	0	0	0	0	0	•			
nsp12遺伝子	F480	0	0	0	0	0	0	0	•			
遍	V557	0	0	0	0	0	0	0	•			
12	S759	0	0	0	0	0	0	0	•			
dsı	V792	0	0	0	0	0	0	0	•			
	M794	0	0	0	0	0	0	0	•			
	E796	0	0	0	0	0	0	0	•			
	C799	0	0	0	0	0	0	0	•			
	E802	0	0	0	0	0	0	0	•			
	T803	0	0	0	0	0	0	0	•			

図 4. 抗ウイルス薬の効果に影響を及ぼす可能性があるアミノ酸置換の割合:8 週単位の推移(2024 年第 31 週~2025 年第 34 週)

Remdesivir に影響する nsp12 の P323 の置換が 100%に近い値で維持されている。ただし、P323 は V166 と同時にアミノ酸置換が起こることにより Remdesivir の効果に影響を及ぼすことが報告されており、P323 の単独のアミノ酸置換では抗ウイルス効果に影響を及ぼさないと考えられる 43,44 。

抗ウイルス薬の効果に影響を及ぼす可能性があるアミノ酸置換を●で示す。<u>これらの置換は必ずしも</u> 臨床的効果に影響を与えるとは限らず、また複数のアミノ酸置換による複合的な影響も考慮されていない。

- ※図表は 2025 年 9 月 25 日時点での PathoGenS 集計データ(暫定)です。
- ※期間は 2024 年第 31 週(2024/7/29)~2025 年第 34 週(2025/8/24)です。
- ※nsp5 の P108, G138, G143, P168, D248, A260, V297, S301, F305 置換は酵素阻害活性のみで検証された。
- ※nsp5 の S46, T135, C160, T169, V186 置換は培養細胞で得られた耐性株で検証されていない。
- ※nsp12 の V166, N198, P323, F480, V557, S759, V792, C799 置換はベクルリー添付文書に記載されている。

参考文献

- 1. Cao, Y. *et al.* Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. *Nature* **602**, 657–663 (2022).
- 2. Starr, T. N. *et al.* Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. *Science* **371**, 850–854 (2021).
- 3. Starr, T. N. *et al.* SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. *Nature* **597**, 97–102 (2021).
- 4. Palomino-Cabrera, R. *et al.* Frequent Emergence of Resistance Mutations Following Complex Intra-Host Genomic Dynamics in SARS-CoV-2 Patients Receiving Sotrovimab. *Antimicrob. Agents Chemother.* **67**, e0026623 (2023).
- 5. Dong, J. *et al.* Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. *Nat Microbiol* **6**, 1233–1244 (2021).
- 6. Iketani, S. *et al.* Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. *Nature* **613**, 558–564 (2023).
- 7. Bouzidi, H. S. *et al.* Generation and evaluation of protease inhibitor-resistant SARS-CoV-2 strains. *Antiviral Res.* **222**, 105814 (2024).
- 8. Duan, Y. *et al.* Molecular mechanisms of SARS-CoV-2 resistance to nirmatrelvir. *Nature* **622**, 376–382 (2023).
- 9. Rawson, J. M. O., Donaldson, E. F., O'Rear, J. J. & Harrington, P. R. Independent FDA analyses of nirmatrelvir/ritonavir resistance in the Phase 2/3 trials EPIC-HR and EPIC-SR. *Clin. Infect. Dis.* (2024) doi:10.1093/cid/ciae615.
- 10. Zhao, L. *et al.* Potent antiviral activity of simnotrelvir against key epidemic SARS-CoV-2 variants with a high resistance barrier. *Antimicrob. Agents Chemother.* **69**, e0155624 (2025).
- 11. Neilsen, G. *et al.* Strategy to overcome a nirmatrelvir resistance mechanism in the SARS-CoV-2 nsp5 protease. *Sci. Adv.* **11**, eadv8875 (2025).
- 12. Rauch, S. *et al.* Highly specific SARS-CoV-2 main protease (Mpro) mutations against the clinical antiviral ensitrelyir selected in a safe, VSV-based system. *Antiviral Res.* **231**, 105969 (2024).
- 13. パキロビット FDA ファクトシートに記載.
- 14. パキロビッドパック添付文書に記載.
- 15. Jochmans, D. *et al.* The Substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor In Vitro and Confer Resistance To Nirmatrelvir. *MBio* **14**, e0281522 (2023).
- 16. Kiso, M. *et al.* In vitro and in vivo characterization of SARS-CoV-2 strains resistant to nirmatrelvir. *Nat. Commun.* **14**, 3952 (2023).
- 17. Zhou, Y. *et al.* Nirmatrelvir-resistant SARS-CoV-2 variants with high fitness in an infectious cell culture system. *Sci. Adv.* **8**, eadd7197 (2022).
- 18. Lo, C.-W. *et al.* Replication capacity and susceptibility of nirmatrelvir-resistant mutants to next-generation Mpro inhibitors in a SARS-CoV-2 replicon system. *Antiviral Res.* **231**, 106022 (2024).

- 19. Zhang, L. *et al.* Resistance mechanisms of SARS-CoV-2 3CLpro to the non-covalent inhibitor WU-04. *Cell Discov.* **10**, 40 (2024).
- 20. Jadhav, P. *et al.* Design of quinoline SARS-CoV-2 papain-like protease inhibitors as oral antiviral drug candidates. *Nat. Commun.* **16**, 1604 (2025).
- 21. Detomasi, T. C. *et al.* Structure-based discovery of highly bioavailable, covalent, broad-spectrum coronavirus MPro inhibitors with potent in vivo efficacy. *Sci. Adv.* **11**, eadt7836 (2025).
- 22. Ma, Y. *et al.* A luminescent attenuated SARS-CoV-2 for the identification and validation of drugresistant mutants. *J. Virol.* e0082125 (2025).
- 23. Heilmann, E. *et al.* SARS-CoV-2 3CLpro mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376. *Sci. Transl. Med.* **15**, eabq7360 (2023).
- 24. Sasi, V. M. *et al.* Predicting antiviral resistance mutations in SARS-CoV-2 main protease with computational and experimental screening. *Biochemistry* **61**, 2495–2505 (2022).
- 25. Hu, Y. *et al.* Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir. *ACS Cent. Sci.* **9**, 1658–1669 (2023).
- 26. Costacurta, F. *et al.* A comprehensive study of SARS-CoV-2 main protease (Mpro) inhibitor-resistant mutants selected in a VSV-based system. *PLoS Pathog.* **20**, e1012522 (2024).
- 27. Le, U. N. P. *et al.* Glycyrrhizic acid conjugates with amino acid methyl esters target the main protease, exhibiting antiviral activity against wild-type and nirmatrelvir-resistant SARS-CoV-2 variants. *Antiviral Res.* **227**, 105920 (2024).
- 28. Moghadasi, S. A. *et al.* Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors. *Sci Adv* **9**, eade8778 (2023).
- 29. Nooruzzaman, M. *et al.* Emergence of transmissible SARS-CoV-2 variants with decreased sensitivity to antivirals in immunocompromised patients with persistent infections. *Nat. Commun.* **15**, 7999 (2024).
- 30. Clayton, J. *et al.* Integrative Approach to Dissect the Drug Resistance Mechanism of the H172Y Mutation of SARS-CoV-2 Main Protease. *J. Chem. Inf. Model.* **63**, 3521–3533 (2023).
- 31. Zhu, Y. *et al.* In vitro selection and analysis of SARS-CoV-2 nirmatrelvir resistance mutations contributing to clinical virus resistance surveillance. *Sci. Adv.* **10**, eadl4013 (2024).
- 32. Uehara, T. *et al.* Ensitrelvir treatment-emergent amino acid substitutions in SARS-CoV-2 3CLpro detected in the SCORPIO-SR phase 3 trial. *Antiviral Res.* **236**, 106097 (2025).
- 33. ゾコーバ添付文書に記載.
- 34. Kiso, M. *et al.* In vitro and in vivo characterization of SARS-CoV-2 resistance to ensitrelvir. *Nat. Commun.* **14**, 4231 (2023).
- 35. ベクルリー添付文書に記載.
- 36. Rodriguez, L. *et al.* SARS-CoV-2 resistance analyses from the Phase 3 PINETREE study of remdesivir treatment in nonhospitalized participants. *Antimicrob. Agents Chemother.* e0123824 (2024).
- 37. Fernandez-Antunez, C. *et al.* SARS-CoV-2 remdesivir exposure leads to different evolutionary pathways that converge in moderate levels of drug resistance. *Viruses* **17**, 1055 (2025).

- 38. Hogan, J. I. *et al.* Remdesivir Resistance in Transplant Recipients With Persistent Coronavirus Disease 2019. *Clin. Infect. Dis.* **76**, 342–345 (2023).
- 39. Iriyama, C. *et al.* Clinical and molecular landscape of prolonged SARS-CoV-2 infection with resistance to remdesivir in immunocompromised patients. *PNAS Nexus* **4**, gaf085 (2025).
- 40. Ichikawa, T. *et al.* Characterization of remdesivir resistance mutations in COVID-19 patients with various immunosuppressive diseases. *Antiviral Res.* **242**, 106264 (2025).
- 41. Gandhi, S. *et al.* De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report. *Nat. Commun.* **13**, 1547 (2022).
- 42. Szemiel, A. M. *et al.* In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2. *PLoS Pathog.* **17**, e1009929 (2021).
- 43. Checkmahomed, L. *et al.* In Vitro Selection of Remdesivir-Resistant SARS-CoV-2 Demonstrates High Barrier to Resistance. *Antimicrob. Agents Chemother.* **66**, e0019822 (2022).
- 44. Mohammad, A., Al-Mulla, F., Wei, D.-Q. & Abubaker, J. Remdesivir MD Simulations Suggest a More Favourable Binding to SARS-CoV-2 RNA Dependent RNA Polymerase Mutant P323L Than Wild-Type. *Biomolecules* **11**, (2021).